
《正弦定理》说课稿
作为一名默默奉献的教育工作者,时常要开展说课稿准备工作,通过说课稿可以很好地改正讲课缺点。说课稿要怎么写呢?以下是小编收集整理的《正弦定理》说课稿,希望能够帮助到大家。
《正弦定理》说课稿1正弦定理位于人教版全日制普通高级中学数学第一册(下)第五章第5。9节。正弦定理揭示了任意三角形边角之间的客观规律,是解三角形的重要工具,也是前阶段学习的三角函数知识与平面向量知识在三角形的交汇应用,并为以后学习余弦定理提供了方法上的模式,为进一步运用正、余弦定理解决测量、工业、几何等方面的实际问题提供了理论基础,使学生又进一步了解数学在实际中的应用,激发他们的学习兴趣。因此学好本节课的知识就显的尤为重要。
由于高一学生对初中几何中的三角形研究的较透彻,记忆深刻,针对我校学生的实际情况,学生们对新问题有一定的探求欲望,但对问题的分析能力尚未成熟。我在教学中从学生已有经验出发,提出问题引起学生对结论迫切追求的愿望,把问题作为教学的出发点,将学生置于主动参与的地位,引导他们进行分析研究。本节课又是在学习了平面向量数量积的基础上来对定理加以证明的,所以重要的是用向量来推导定理的证明方法。
根据上述教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下
教学目标:
知识与技能目标:理解用向量的方法推导正弦定理的过程,掌握正弦定理,初步运用正弦定理解决两类基本的解三角形问题。
过程与方法目标:通过对定理的探究,培养学生合情推理发现数学规律的思维方法与能力;通过对定理的证明和应用,培养学生独立解决问题的能力和体会数形结合的思想方法。
情感、态度与价值观目标:通过利用向量证明正弦定理了解向量的工具性,体会知识的内在联系,体会事物之间相互联系与辨证统一。
由于正弦定理的证明有很多种方法,本教材是以向量的方法进行了证明,这主要是由于利用向量的数量积,可以把三角形的边长和内角的三角函数联系起来,从而把几何问题转化为代数运算;这样处理不但能对知识进行综合运用,而且还涉及到数形结合、分类讨论等多种数学思想,有利于培养学生的数学思维,因此确立
教学重点:正弦定理的证明极其应用。
教学难点:定理的探究和向量知识在证明正弦定理时的应用。
现行中学教材主要是演绎推理的体系,对定理往往直接给出,而不揭示如何猜想到这个定理,为什么要这样证明,是如何想到这个思路的。这不符合学生的认知规律,本节课恰好是促进学生探索能力提高的好机会。因此我在处理过程中力求达到解决如下问题:如何猜测出定理,如何将向量的数量积和定理建立联系,如何想到构造垂直向量。因此我打算充分利用学生已有的知识和经验,让学生自主探究,在探究的.过程中努力把知识与技能、过程与方法、情感态度、价值观有机的结合起来。基于这个想法,这节课我按照以下六个环节进行教学。
1、创设情境,导入新课。
2、自主探索,合理猜想。
3、深入剖析,证明猜想。
4、深化研究,归纳总结。
5、定理应用,巩固新知。
6、归纳总结,布置作业。
一、创设情境,导入新课:
首先,我创设一个问题情境,要想解决问题需要采用割补的方法,需要将一般的三角形先分割成直角三角形后利用直角三角形的边角关系来解决问题,这样处理问题较繁琐,自然引入问题,那对于一般三角形是不是也有某些边角关系呢?学生的学习兴趣被调动起来,该怎样寻找这个关系哪?自然联想到在一般三角形如果成立,那直角角形就一定成立,可不可以由直角三角形开始探索定理。激发学生的思维兴趣,使学生从心理上感受到研究直角三角形的重要性,引发其思考,不是强行要他们接受,培养他们由实际问题抽象出数学问题并加以解决的能力,并渗透从特殊到一般的数学思想,并恰当地引出第二个环节。
二、自主探索,合理猜想:
在本环节中设计了如下几个问题
问题1:在直角三角形中研究边角关系都有那些结论?
问题2:对于,如何用其他的边角来表示斜边?
问题3:那么呢?
问题4:你能得到什么结论?
这几个问题的设计是让学生自主探索,通过提问引发学生合理猜想,启发引导学生从三角函数定义出发,独立发现直角三角形中的边角关系,并猜测定理。
为了说明结论在一般三角形中成立,在这里引入了一个几何画板的小程序,使学生能够清楚的看到,无论是边角怎样变化,都成立,引出本节课的内容。这样,由特殊到一般,由感性到理性,让学生感受、理解知识的产生和发展过程,培养学生探索数学规律的能力。
三、深入剖析,证明猜想:
这部分是本节的难点,也是重点。在这个环节中由于直角三角形已验证,因此引导学生以锐角三角形为例加以证明。由于学生很容易出现初中几何证明方法,但为了突出向量的工具性教师说明:初中平面几何知识可以证明定理,课下可以自己探索,在前面学习向量时曾强调向量的工具性,那今天这个定理能否用向量来证明哪?这样就突出本节课的重点。但学生对使用向量法证明数学问题较生疏,很难找到证明的切入点。所以我设计了以下几个问题。
问题1:要证,可先证(1)我们需要构造一个等式,那由三角形如何建立向量的等量关系呢?
设计这个问题是首先将问题分解,使学生头脑清楚,又因为所要证明的正弦定理是等式,所以从已知等式入手来探讨。
问题2:我们的目标是什么?
问题3:请同学们回顾一下,你曾学过能将线段与某个角的三角函数联系在一起的数学关系式吗?
设计这两个问题使学生明确为什么要能想到构造一个向量和等式进行数量积证明。
问题4:要证的有两边两角,而现在是有三边没角,则应引入怎样的一个角与两边向量的进行数量积运算后使得c边消去?
这样设计学生很自然的想到要使C边不存在,就必须做一个向量,使c边和它垂直,从而利用垂直向量点积为零,消去c边。学生自己思考后会过A做与AB垂直的向量。
问题5:是否一定过A点?
问题6:向量的方向确定了,长度如何确定?任意长度都可以吗?请同学们自己动手试一试
这样设计激发了学生们的学习兴趣,他们通过自己动手探索,亲自实践,充分理解向量的平移的意义,两个向量的数量积和夹角,并理解定理证明。学生在探究中可能会在n与CB的夹角出错,有的会认为是90—B或180—C,此时教师针对学生对向量夹角的问题进行点拨,从而证明。学生们通过运算发现n任意长度都可以,为计算简便所以书上取单位向量j,这样学生就会理解为什么要取单位向量j。
问题7:我们(1)式所得到的结果还不是我们研究目标的全部,还需要证明(2)或(3),我们以(2)为例 ……此处隐藏10792个字……p>
(2)设A,B两点在河的两岸,只给你米尺和量角设备,不过河你可以测出它们之间的距离吗?
设计意图:通过生活中的知识引入,激发学生学习需要和学习期待,以问题引起学生学习热情和探索新知的欲望。让学生积极主动的参与到课堂里面来,更好的调动学习氛围。
(二)新课教学
1.复习旧知
带动学生回忆以前学过的知识,并设置如下问题引导学生思考,减少学生对新知识的陌生感。
教师提问:(1)请同学们回忆一下,直角三角形中的各个角的正弦是怎样表示的?这三个式子可以用同一个量联系起来吗?
(2)在一般三角形中,该式是否也成立呢?
这样的设置是层层递进,符合学生的认知特点,由易到难,从表象到实质的规律,并且为后面的.原因的探究奠定了基础。
2.定理的推导
定理的推导是数学学习必不可少的一种能力,因此进行了如下推导过程。教师通过提示给出锐角三角形、钝角三角形图形设置一系列层层递进的问题,用问题牵引着学生去探究。并且将学生分成小组去讨论该如何推导证明该定理。
教师设问如下:
①当△ABC是锐角三角形时,结论是否还成立呢?
②在直角三角形中我们找的中间变量是直角三角形的斜边,那么,此时我们应该找一个什么样的中间变量呢?
③什么量可以与三角形的边与正弦值联系起来呢?
在得出结果之后接着设问:当△ABC是钝角三角形时,结论是否还成立呢?通过这样一个问题,不仅让学生知道数学问题需要分类讨论所有可能出现的情况,更能真正培养学生分析问题的能力与知识迁移能力,将在锐角三角形中的证明方法运用到钝角三角形中来。
学生小组讨论,小组代表发表自己的组内的意见,得出结论。
最后师生共同归纳定理的数学语言与文字语言。
《正弦定理》说课稿8大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。
一 教材分析
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的`主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
二 教法
根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点
三 学法:
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
四 教学过程
第一:创设情景,大概用2分钟
第二:实践探究,形成概念,大约用25分钟
第三:应用概念,拓展反思,大约用13分钟
(一)创设情境,布疑激趣
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3.让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明
(四)归纳总结,简单应用
1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
3.运用正弦定理求解本节课引引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.